skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bernardi, Marco"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 1, 2026
  2. Understanding electronic interactions in high-temperature superconductors is an outstanding challenge. In the widely studied cuprate materials, experimental evidence points to strong electron-phonon ( e -ph) coupling and broad photoemission spectra. Yet, the microscopic origin of this behavior is not fully understood. Here, we study e -ph interactions and polarons in a prototypical parent (undoped) cuprate, La 2 CuO 4 (LCO), by means of first-principles calculations. Leveraging parameter-free Hubbard-corrected density functional theory, we obtain a ground state with the band gap and Cu magnetic moment in nearly exact agreement with experiments. This enables a quantitative characterization of e -ph interactions. Our calculations reveal two classes of longitudinal optical (LO) phonons with strong e -ph coupling to hole states. These modes consist of bond stretching and bond bending in the Cu-O plane as well as vibrations of apical O atoms. The hole spectral functions, obtained with a cumulant method that can capture strong e -ph coupling, exhibit broad quasiparticle peaks with a small spectral weight ( Z 0.25 ) and pronounced LO-phonon sidebands characteristic of polaron effects. Our calculations predict features observed in photoemission spectra, including a 40-meV peak in the e -ph coupling distribution function not explained by existing models. These results show that the universal strong e -ph coupling found experimentally in doped lanthanum cuprates is also present in the parent compound, and elucidate its microscopic origin. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  3. Chromium trihalides (CrX3, with X=I,Br,Cl) are layered ferromagnetic materials with rich physics and possible applications. Their structure consists of magnetic Cr atoms positioned between two layers of halide atoms. The choice of halide results in distinct magnetic properties, but their effect on spin-wave (magnon) excitations is not fully understood. Here we present first-principles calculations of magnon dispersions and wave functions for monolayer Cr trihalides using the finite-momentum Bethe-Salpeter equation (BSE) to describe collective spin-flip excitations. We study the dependence of magnon dispersions on the halide species and resolve the small topological gap at the Dirac point in the magnon spectrum by including spin-orbit coupling. Analysis of magnon wave functions reveals that magnons are made up of electronic transitions with a wider energy range than excitons in CrX3 monolayers, providing insight into magnon states in real and reciprocal space. We discuss Heisenberg exchange parameters extracted from the BSE and discuss the convergence of BSE magnon calculations. Our work advances the quantitative modeling of magnons in two-dimensional materials, providing the starting point for studying magnon interactions in a first-principles BSE framework. 
    more » « less
    Free, publicly-accessible full text available February 10, 2026
  4. Modeling spin-wave (magnon) dynamics in novel materials is important to advance spintronics and spin-based quantum technologies. The interactions between magnons and lattice vibrations (phonons) limit the length scale for magnon transport. However, quantifying these interactions remains challenging. Here we show many-body calculations of magnon-phonon (mag-ph) coupling based on the ab initio Bethe-Salpeter equation. We derive expressions for mag-ph coupling matrices and compute them in 2D ferromagnets, focusing on hydrogenated graphene and monolayer CrI3. Our analysis shows that electron-phonon (e-ph) and mag-ph interactions differ significantly, where modes with weak e-ph coupling can exhibit strong mag-ph coupling (and vice versa), and reveals which phonon modes couple more strongly with magnons. In both materials studied here, the inelastic magnon relaxation time is found to decrease abruptly above the threshold for emission of strongly coupled phonons, thereby defining a low-energy window for efficient magnon transport. By averaging in this window, we compute the temperature-dependent magnon mean-free path, a key figure of merit for spintronics, entirely from first principles. The theory and computational tools shown in this work enable studies of magnon interactions, scattering, and dynamics in generic materials, advancing the design of magnetic systems and magnon- and spin-based devices. 
    more » « less
    Free, publicly-accessible full text available February 7, 2026
  5. Exploration and advancements in ultrawide bandgap (UWBG) semiconductors are pivotal for next-generation high-power electronics and deep-ultraviolet (DUV) optoelectronics. Here, we used a thin heterostructure design to facilitate high conductivity due to the low electron mass and relatively weak electron-phonon coupling, while the atomically thin films ensured high transparency. We used a heterostructure comprising SrSnO3/La:SrSnO3/GdScO3(110), and applied electrostatic gating, which allow us to effectively separate charge carriers in SrSnO3from dopants and achieve phonon-limited transport behavior in strain-stabilized tetragonal SrSnO3. This led to a modulation of carrier density from 1018to 1020cm−3, with room temperature mobilities ranging from 40 to 140 cm2V−1s−1. The phonon-limited mobility, calculated from first principles, closely matched experimental results, suggesting that room temperature mobility could be further increased with higher electron density. In addition, the sample exhibited 85% optical transparency at a 300-nm wavelength. These findings highlight the potential of heterostructure design for transparent UWBG semiconductor applications, especially in DUV regime. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  6. First-principles calculations of electron interactions in materials have seen rapid progress in recent years, with electron-phonon (e-ph) interactions being a prime example. However, these techniques use large matrices encoding the interactions on dense momentum grids, which reduces computational efficiency and obscures interpretability. For e-ph interactions, existing interpolation techniques leverage locality in real space, but the high dimensionality of the data remains a bottleneck to balance cost and accuracy. Here we show an efficient way to compress e-ph interactions based on singular value decomposition (SVD), a widely used matrix and image compression technique. Leveraging (un)constrained SVD methods, we accurately predict material properties related to e-ph interactions—including charge mobility, spin relaxation times, band renormalization, and superconducting critical temperature—while using only a small fraction (1%–2%) of the interaction data. These findings unveil the hidden low-dimensional nature of e-ph interactions. Furthermore, they accelerate state-of-the-art first-principles e-ph calculations by about 2 orders of magnitude without sacrificing accuracy. Our Pareto-optimal parametrization of e-ph interactions can be readily generalized to electron-electron and electron-defect interactions, as well as to other couplings, advancing quantitative studies of condensed matter. 
    more » « less
  7. Exact simulations of quantum circuits (QCs) are currently limited to ~50 qubits because the memory and computational cost required to store the QC wave function scale exponentially with qubit number. Therefore, developing efficient schemes for approximate QC simulations is a current research focus. Here we show simulations of QCs with a method inspired by density functional theory (DFT), a widely used approach to study many-electron systems. Our calculations can predict marginal single-qubit probabilities (SQPs) with over 90% accuracy in several classes of QCs with universal gate sets, using memory and computational resources linear in qubit number despite the formal exponential cost of the SQPs. This is achieved by developing a mean-field description of QCs and formulating optimal single- and two-qubit gate functionals – analogs of exchange-correlation functionals in DFT – to evolve the SQPs without computing the QC wave function. Current limitations and future extensions of this formalism are discussed. 
    more » « less